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Motivation [§ VirginiaTech

Invent the Future®

@ Development of a “Cyber Wind Facility” capable of predicting transient loads and
motions of an offshore turbine and floating platform operating in marine atmospheric
boundary layer and ocean waves

e Hydrodynamics and mooring—line dynamics are key considerations for this problem

@ Current state-of-the-art engineering tools are based upon semi-empirical time-domain

methods (e.g., Cummins equation)
o Examples include: NREL's Hydrodyn, OrcaFlex, ANSYS AQWA
e These models use various theories for radiation, diffraction, hydrostatics, and viscous effects.
e Morison's equation is commonly used for damping and inertia forces due to wave excitation.

@ Some floating platforms have complex underwater geometry (e.g., OC4
Semi-submersible), which precludes the use of theoretical or historical data for drag,
inertia, damping, added mass, etc.
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Objective of current study [ VirginiaTech
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@ Perform multi-phase RANS simulations of a fixed platform in waves (i.e., the
diffraction-wave problem).
o This is a precursor study prior to undertaking full 6DOF/RANS simulations, including
mooring-line models
@ Compare CFD computed wave-excitation forces for OC3 spar-buoy to Morison's equation
model (using both CFD-based or experimental coefficients).

D. Zhang , E. G. Paterson (VT) Wave forces on platform SOWE 2014 4 /34



Outline

© CWF Hydrodynamics Module

@ VirginiaTech

Invent the Future®

D. Zhang , E. G. Paterson

(VT)

Wave forces on platform



Computational Model I/ VirginiaTech

Invent the Future®

o Tightly—coupled multiphase Navier-Stokes equations and Newton's 6DOF
equation-of-motion. Following presentation by A. Dunbar will present details of algorithm.

@ Wave generation using the waves2Foam library (Jacobsen et al., 2012).
@ Mooring—line forces via catenary—line model.

@ Selectable-fidelity model of the wind turbine, including actuator—disk and actuator—line
models. ALM model developed by CWF team members, Prof. Schmitz and Pankaj Jha.

@ Dynamic meshing using an Elliptic mesh-deformation model with variable stiffness, which
maintains near-wall mesh quality (Campbell and Paterson, 2011).
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Wave Library: waves2Foam I VirginiaTech
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Library Structure: Waves theories, Boundary conditions, Relaxation techniques, Dictionaries,
and Utilities.

libwaves2Foam.so
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waveTheory mixedFvPatchField
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Wave Library: waves2Foam [l VirginiaTech

Invent the Future®

@ Common wave theories are implemented in waves2Foam

Potential current

Regular waves: Stokes 1st, 2nd and 5th order theory
Solitary wave

Irregular waves

@ Boundary conditions apply wave theory to velocity, pressure, and volume-fraction fields.

@ Relaxation zones provide numerical beaches for explicit and implicit damping of waves to
control wave reflections

o Utilities are provided, e.g., setWaveField is similar to setFields for prescribing initial
wave field to velocity and alpha fields.
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@ VirginiaTech
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Floating platform geometry

Turbine models
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Figure : Schematics of Semi-Submersible platform Figure : Schematics of OC3-Hywind spar buoy
with wind turbine in ocean waves and with wind turbine in ocean waves and currents
(Jonkman, 2010)
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Flow conditions

Statistical data from National Data Buoy Center(NDBC)

@ Close to research area of Virginia Offshore Wind Technology
Advancement Project(VOWTAP).

@ Real time data updated every 1 hour

@ Historical data in the last two decades including
Standard meteorological data

Continuous winds data

Spectral wave data

Ocean current data
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Flow conditions

Chart (Chakrabarti 1987) with summary of
four cases and dominant physics.
First-order Stokes' wave:

@ Base case: H=3m, L=60m
o Case 2: H=3m, L=90m
@ Case 3: H=7m, L=90m
o Case 4: H=0.65m, L=90m
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Meshing and boundary conditions [l VirginiaTech

Invent the Future®

@ Mesh generated using Pointwise.

@ Buoy-+tower system is very tall: buoy depth of
120m, hub-height of 90m.
@ Domain size
e -120m < x < 120m
e -60m <y < 60m
e -180m < z < 120m

@ Near-wall resolution: lcm (very coarse)

@ Uniform axial spacing upstream of buoy for
resolving waves

@ Vertical clustering around DWL - design water line
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Meshing and boundary conditions
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pressureInletOutletVelocity ;

|

|

Outlet :
zeroGradient

No-slip :
fixedvalue and
wall-functions

|
|
waveVelocity and

waveAlpha from /

Inlet : L
waves2Foam library /

o Sides :

'/\/ . inletOutlet
— Slip

Wave forces on platform

SOWE 2014 16 / 34

D. Zhang , E. G. Paterson (VT)



Computational parameters I/ VirginiaTech
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@ Finite volume schemes

limited schemes used to improve stability

o cellLimited Gauss linear for gradSchemes of U and alphal
e Convection schemes used in divSchemes sub-dictionary

@ Gauss linearUpwindV for momentum equation

o Gauss vanLeer for VOF equation

@ Gauss interfaceCompression for interface sharpening
@ Gauss upwind for turbulence models

@ Finite volume solvers

GAMG with the DIC smoother for pressure-Poisson equation
PBiCG for all other equations

e PISO algorithm control

nCorrectors 3;
nNonOrthogonalCorrectors 1;
nAlphaCorr 1,
nAlphaSubCycles 1;

cAlpha 1;
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High-Performance Computing Resources [l VirginiaTech
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@ Advanced Research Computing (ARC) at Virginia Tech
o BlueRidge: 318-node Cray CS-300 cluster, each node is outfitted with two octa-core Intel
Sandy Bridge CPUs and 64GB memory.
o Hokiespeed: GPU-accelerated cluster with 204 nodes. Each nodes has 24GB memory, two
six-core Xeon E5645 CPUs with two NVIDIA M2025/C2050 GPU.
o Each user can request up to 1024 cores on Blueridge and 384 cores on Hokiespeed.
e Maximum run time in normal queue is 144 hours and 72 hours respectively.

@ We currently use foam-extend-3.0. Have used OpenFOAM 2.2 and 2.3, but recent bugs
have caused concern in using these versions.

@ For mesh of 5M cells, execution time less than 3 hours on 96 processors for 120 seconds
of physical time (approx 10-15 wave encounters).
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Free-surface wave-elevation contours [l VirginiaTech
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Figure : Wave elevation on free surface (H=7m, L=90m) Figure : Wave elevation on free surface with
wave-induced circulations in y—plane (H=7m, L=90m)
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Unsteady velocity field vs. depth [IVirginiaTech

z=-40m
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For reference, velocity field of
1st-order Stokes wave

u(x, t) = wAexp*? cos(kx — wt)

. w(x, t) = wAexp®? sin(kx — wt)
ux
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Figure : Variation of flow velocity in x—direction with depth (H=7m, L=90m)
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Unsteady inline force
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Wave force theory ¥ VirginiaTech
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Morison's equation for circular cylinder

F=2CnpD?3Y +1CypDU | U |
U = Upsin(wt)

@ F is the inline force; Cp,, and Cy are the inertial and drag coefficient

e C,, and Cy are functions of Keulegan-Carpenter number K = U, T /D and Reynods
number Re = Uy, D /v

@ It's a empirical approach, a vast range of experimental data on C,, and Cy is available
from numerous lab and field tests

@ Provides acceptable and reliable prediction of wave force on many offshore structures.
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Experimental data (Sarpkaya, 1976) [/ VirginiaTech
Invent the Future®
Sarpkaya (1976) conducted a series of . | cava 1676
experiments in a U-shape water U-Shape water tunnel (Sarpkaya 1976)
tunnel to study the hydrodynamic
. . . . e~ 6ft >
force on different size cylinders in 7
various flow conditions
@ Period T =5.5s = T =
. . . P 1 1 e P
@ 7 cylinders with diameters eylinder toft
ranging from 2 to 6.5 inches \ J
were used \\ $ I /
| v
30 ft >|
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Experimental data (Sarpkaya, 1976) I VirginiaTech
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Experimental data (Sarpkaya, 1976) [ VirginiaTech

@ Sarpkaya(1976) also studied the
force on cylinders at high
Reynolds number.

@ We can observe from the figures
that at high Re, C,, approaches
1.8 and Cy approaches 0.65 at
various values of K.
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Figure : Cp(left) and Cy(right) versus Re for various values of K
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Application to 3D using Strip Theory | [ VirginiaTech
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% @ Water particle velocity is derived from linear wave
theory

strip @ Reynolds number along the vertical length of the

pile ranges from 107 near free surface to 10° at
wave base.

@ We assume C,, = 1.8 and Cy = 0.65
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Application to 3D using Strip Theory Il [ VirginiaTech
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Variation of K versus depth Z

@ By assuming linear theory, we have the
ratio between inertial and drag force:
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Figure : Inline force history of the base case in
one cycle
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Comparison of CFD and Strip Theory [ VirginiaTech
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Average peak force:

Base | Case 2 | Case 3 | Case 4
CFD 5eb le6 2.5e6 2eb
Morison's equation | 1.25e6 | 1.4e6 | 3.3e6 | 3.leb

Two possible reasons for the difference:
@ Lack of full-scale coefficients and the uncertainty of extrapolation from model scale

@ Numerical uncertainties in CFD and lack of grid—dependence study

Prognosis for accurate prediction using Morison’s equation for complex geometry is poor
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Conclusions @ VirginiaTech
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@ The “Cyber-Wind Facility” Hydrodynamics Module has been used for several different
applications.

e 2D simulation of KC problem for Morrison's equation coefficients at model scale for
comparison to Sarpkaya (1976) [not discussed|.
e Simulation of OC3 spar-buoy in waves using interFoam and waves2Foam. Conditions set to
Hs typical for future offshore-wind-plant near the coast of Virginia.
e Diffraction-wave loads (i.e., fixed platform) compared to strip-wise application of
Morison’s equation. Agreement is poor.

@ Hypothesis for discrepancy is that full-scale coefficients are unknown, and CFD accuracy
not yet assessed using domain—size, and time—step and grid refinement studies.

@ Use of robust HPC resources at VT-ARC give good turn-around. Many cases can be
simulated in 24-hour period.
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Future Work [§ VirginiaTech
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Re-mesh for larger domain which includes rotor disc.

Compute Morison's equation coefficients at full-scale conditions, and quantify 3D and
scale effects.

Test and debug mooring-line model
Collaborate with CWF team members

e Use A. Dunbar's tightly coupled 6DOF/RANS solver
e Incorporate S. Schmitz and P. Jha ALM for turbine forces

Extend waves2Foam for directional spectrum and short-crested wave model (e.g.,
Elfouhailey, et al., 1997)

Write and defend PhD dissertation (December 2015)
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